Abstract

In order to contribute to the understanding of carbonate enrichment and clay illuviation in loess-derived soils of subhumid to humid regions, the development of soils was studied along a climate gradient with xeric and udic soil moisture regimes (SMR) and thermic and mesic soil temperature regimes (STR), respectively, in the Golestan Province, Northeastern Iran. Six representative pedons along a climate gradient were investigated. Soils were classified mainly as Hapludalfs and Haploxeralfs. Stability of the geomorphic surface under forest vegetation associated with high leaching conditions has provided appropriate conditions for decalcification followed by clay migration through the profile and formation of argillic horizons in all the studied soils. Clay content of the Bt horizons, soil organic carbon concentration of the A horizons, and depth of the Bk horizons increased significantly with increasing precipitation and decreasing temperature. There was a considerable decrease in silt content with soil development. The main pedofeatures observed in the Bt horizons were clay coatings and decalcified zones. Nodules, coatings and hypocoatings were the main calcitic pedofeatures observed in the Bk horizons. Occurrence and preservation of clay coatings were more pronounced in the udic regions with illite and vermiculite as the dominant clay minerals. Type of clay minerals, shrink/swell properties, and precipitation rate are factors affecting the abundance and preservation of clay coatings. In the strongly developed horizons of the udic SMR, the occurrence of vermiculite clay minerals could reduce the shrink/swell potential and increase the amount of clay coatings. The presence of crystallitic b-fabrics and the high carbonate contents (CaCO3) in the lower horizons (Bk) were mainly related to decalcification processes under descending water flow in the overlying horizons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.