Abstract

This study aimed to reconstruct the history of soil development, ecosystem changes and associated erosional processes in a small mountain lacustrine basin at the decennial to millennial scale. Geochemical proxies of soil evolution were analysed in the Holocene lacustrine sediments and peats from Thyl Lake, Maurienne Valley, French Alps. Podzolization and chemical weathering processes were assessed using secondary Al- and Fe-bearing phases together with major and Rare Earth Elements (REE). The resulting proxy records, spanning ca. 4,400 years between 8.6 and 4.2 cal ka BP, indicate that progressive pedogenesis occurred after deglaciation in a relatively stable subalpine ecosystem. As shown by the associated increase in Al- and Fe-bearing phases and some REE fractions, the establishment of a mixed cembra pine ecosystem from ca. 7.2-6.5 ka BP was associated with enhanced podzolisation processes in the catchment. The progressive soil development was followed by a rapid transformation of the local environment and plant cover (the open waters of the lake were replaced by a confined peat environment) together with changes in forest fire regimes from ca. 6.8 ka BP. Depleted REE patterns, associated with low contents of secondary Al and Fe, suggest a decrease in chemical weathering and podzolization in the catchment at that time, possibly associated with local intensification of weathering and drainage processes in a relatively acidic peat environment. The higher variability of cembra pine and the increased abundance of sedge and other herbaceous plant remains in the lake sediment indicate semi-open vegetation environments from 5.7 cal ka BP onwards. Whereas fire events and plant cover appear to be significantly related, the soil processes seem primarily linked to vegetation composition, and secondarily to changes in fire regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.