Abstract
Respiration of live roots was the single largest contributor to soil CO2 evolution in two mature slash pine (Pinuselliottii) plantations. Root respiration accounted for 51% of soil CO2 evolution at the 9-year-old plantation and 62% at the 29-year-old plantation. Additional estimates, calculated from data recorded from two small trenched plot sites at the 29-year-old plantation and based on possible variations in initial root biomass and subsequent decomposition rates, also averaged 62% of soil CO2 evolution. Specific root respiration averaged 0.40 g•g−1•year−1, varying from 0.34 to 1.70 g•g−1•year−1. Plots with larger proportions of fine roots had faster soil CO2 evolution rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.