Abstract
Natural forests have the ability to sequester atmospheric carbon for a long time and fix it into the soil through a variety of processes such as decomposition and root respiration. The changing environment of alpine forests alters the characteristics of soil carbon, causing it to be divided into several components. The current study looked at soil carbon fractions and how they changed over time, both annually and seasonally, at different depths and along an altitudinal gradient. Seasonal sampling was carried out at three depths, with standard procedures employed to estimate the results of soil carbon fractions. The results showed that the surface layer (10 cm) had the highest value of all soil qualities such as SOC, Fraction I, Fraction II, Fraction III, SOM and active pool of carbon than the subsurface (20 cm and 30 cm) layers with autumn dominating the seasons. Site 1 had the highest value and Site 4 lowest, indicating that altitudinal variance had a direct relationship with distinct soil fractions. On an annual basis, the corresponding soil carbon fraction variation was examined, revealing the maximum retention capability at 30 cm of depth. According to the findings, the soils of the Western Himalayas have a high potential for carbon sequestration and conversion into various fractions, with significant annual and seasonal change due to changing environmental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.