Abstract
Although the buried oxide in the silicon-on-insulator (SOI) MOSFET makes possible higher performance circuits, it is also responsible for various floating body effects, including the kink effect, drain current transients, and history dependence of output characteristics. It is difficult to incorporate an effective contact to the body because of limitations imposed by the SOI structure. One candidate, which maintains device symmetry, is the lateral body contact. However, high lateral body resistance makes the contact effective only in narrow width devices. In this work, a buried lateral body contact in SOI is described which consists of a low-resistance polysilicon strap running under the MOSFET body along the device width. MOSFET's with effective channel length of 0.17 /spl mu/m have been fabricated incorporating this buried body strap, showing improved breakdown characteristics. Low leakage of the source and drain junctions demonstrates that the buried strap is compatible with deep submicron devices. Device modeling and analysis are used to quantify the effect of strap resistance on device performance. By accounting for the lateral resistance of the body, the model can be used to determine the maximum allowable device width, given the requirement of maintaining an adequate body contact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.