Abstract

The article addresses the issue of reliability of complex embedded control systems in the safety-critical environment. In this article, we propose a novel approach to design controller that (i) guarantees the safety of nonlinear physical systems, (ii) enables safe system restart during runtime, and (iii) allows the use of complex, unverified controllers (e.g., neural networks) that drive the physical systems toward complex specifications. We use abstraction-based controller synthesis approach to design a formally verified controller that provides application and system-level fault tolerance along with safety guarantee. Moreover, our approach is implementable using a commercial-off-the-shelf (COTS) processing unit. To demonstrate the efficacy of our solution and to verify the safety of the system under various types of faults injected in applications and in the underlying real-time operating system (RTOS), we implemented the proposed controller for the inverted pendulum and three degrees-of-freedom (3-DOF) helicopter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.