Abstract

In recent years, the proliferation of remote sensing satellites has dramatically increased the demands of Earth observation and observing efficiency. Designing a promising satellite resource scheduling method is a pivotal way to meet the requirements of this scenario. However, with hundreds or more satellites involved, the existing optimization methods struggle to address the NP-hard resource scheduling problem effectively. In this paper, an approach named software-defined satellite observation (SDSO) is proposed. First, adopting the new design ideology, we define a unified specification based on a discrete spatial grid to describe the observation capability of all satellites. The observation resources are virtualized using the virtual resource pool technique and then stored in the database in advance, implementing on-demand acquisition for observation resources. Next, we designed a model of the remote sensing satellite resource scheduling problem based on a virtual resource pool and designed a solution method for searching information within the virtual resource pool. Finally, the experimental results show that the computational efficiency of the proposed SDSO methodology has a substantial advantage over the traditional methods. Meanwhile, with the growing number of satellites involved in scheduling, there is only a slight degradation in the execution performance of our method, while the time complexity of optimization-based approaches increases exponentially.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.