Abstract

The escalating demand for biomedical systems that can precisely diagnose and manage critical diseases underscores the need for innovative solutions. A non-invasive and intelligent Internet of Medical Things (IoMT) system emerges as a promising technology, potentially enabling physicians to assess patients with reduced health risks. The respiratory rate is a pivotal vital sign among the primary clinical assessments. The allure of Radio Frequency (RF) sensing lies in its ability to monitor respiratory patterns without direct contact. However, the practical implementation of such systems often necessitates supplementary hardware to manage the extensive data and radio functionalities, leading to concerns related to cost and feasibility. Software-Defined Radio (SDR) technology presents itself as a viable solution to these challenges. This research introduces a comprehensive framework for the IoMT system, aiming to diagnose respiratory abnormalities early through RF sensing and SDR technology. We employ a deep learning framework and compare its performance with traditional machine learning models to ensure reliable and precise classification of respiratory abnormalities. The achieved results underscore the superiority of deep learning frameworks over conventional machine learning models in classifying respiratory anomalies. Specifically, the deep learning framework exhibits exceptional performance in discerning the temporal dependencies and patterns inherent in respiratory abnormalities, achieving an average accuracy exceeding 98% for each respiratory abnormality classification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.