Abstract

An efficient implementation of an adaptive finite element method on distributed memory systems requires an efficient linear solver. Most solver methods, which show scalability to a large number of processors make use of some geometric information of the mesh. This information has to be provided to the solver in an efficient and solver specific way. We introduce data structures and numerical algorithms which fulfill this task and allow in addition for an user-friendly implementation of a large class of linear solvers. The concepts and algorithms are demonstrated for global matrix solvers and domain decomposition methods for various problems in fluid dynamics, continuum mechanics and materials science. Weak and strong scaling is shown for up to 16.384 processors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.