Abstract

Allograft safety is contingent on effective sterilization. However, current sterilization methods have been associated with decreased biomechanical strength and higher failure rates of soft-tissue allografts. In this study, electron beam (e-beam) sterilization was explored as an alternative sterilization method to preserve biomechanical integrity. We hypothesized that e-beam sterilization would not significantly alter the biomechanical properties of tendon allograft compared with aseptic, nonsterilized controls and gamma-irradiated grafts. Separate sets of forty fresh-frozen tibialis tendon allografts (four from each of ten donors) and forty bisected bone-patellar tendon-bone (BTB) allografts (four from each of ten donors) were randomly assigned to four study groups. One group received a 17.1 to 21.0-kGy gamma radiation dose; two other groups were sterilized with an e-beam at either a high (17.1 to 21.0-kGy) or low (9.2 to 12.2-kGy) dose. A fourth group served as nonsterilized controls. Each graft was cyclically loaded to 200 N of tension for 2000 cycles at a frequency of 2 Hz, allowed to relax for five minutes, and then tested in tension until failure at a 100%/sec strain rate. One-way analysis of variance testing was used to identify significant differences. Tibialis tendons sterilized with both e-beam treatments and with gamma irradiation exhibited values for cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus that were not significantly different from those of nonsterilized controls. BTB allografts sterilized with the high e-beam dose and with gamma irradiation were not significantly different in cyclic tendon elongation, maximum load, maximum displacement, stiffness, maximum stress, maximum strain, and elastic modulus from nonsterilized controls. BTB allografts sterilized with the e-beam at the lower dose were significantly less stiff than nonsterilized controls (p = 0.014) but did not differ from controls in any other properties. The difference in stiffness likely resulted from variations in tendon size rather than the treatments, as the elastic moduli of the groups were similar. The biomechanical properties of tibialis and BTB allografts sterilized with use of an e-beam at a dose range of 17.1 to 21.0 kGy were not different from those of aseptic, nonsterilized controls or gamma-irradiated allografts. E-beam sterilization can be a viable method to produce safe and biomechanically uncompromised soft-tissue allografts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.