Abstract
This article derives a mathematical model and compares different soft-computing techniques for control of a highly dynamic ball and beam system. The techniques which were incorporated for control of proposed system were fuzzy logic, proportional-integral-derivative (PID), adaptive neuro fuzzy inference system (ANFIS) and neural networks. Initially, a fuzzy controller has been developed using seven gaussian shape membership functions. The article illustrates briefly both learning ability and parameter estimation properties of ANFIS and neural controllers. The results of PID controller were collected and used for training of ANFIS and Neural controllers. A Matlab simulink model of a ball and beam system has been derived for simulating and comparing different controllers. The performances of controllers were measured and compared in terms of settling time and steady state error. Simulation results proved the superiority of ANFIS over other control techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Evolutionary Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.