Abstract

Due to the complex dynamic behavior of a Wastewater Treatment Process (WWTP), the existing soft-sensing models usually fail to efficiently and accurately predict its effluent water quality. Especially when a lot of practical data is provided and we do not know which data-pair is more valuable, WWTP modeling becomes a time-consuming process. The main reason is that the existing soft-sensing models update their parameters at each data-pair in one iteration, while some update operations are meaningless. To address this thorny problem, this paper proposes a Deep Belief Network with Event-triggered Learning (DBN-EL) to improve the efficiency and accuracy of soft-sensing model in WWTP. First, some events are defined according to different running condition during the process of training DBN-based soft-sensing model. The different running condition is dominated by the fluctuation of error-reduction rate. Second, an event-triggered learning strategy is designed to construct DBN-EL, whose parameters are updated only when a positive event is triggered. Thirdly, we present the convergence analysis of DBN-EL based on the optimization in a Markov process. Finally, the effectiveness of DBN-EL is demonstrated on soft-sensing of total phosphorus concentration in a practical WWTP system. In experiment, DBN-EL is compared with nine different models on soft-sensing of WWTP. The experimental results show that the efficiency of DBN-EL is 27.6%–64.9% higher than that of nine competitive models, which indicates that the proposed model is readily available for industrial deployment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.