Abstract

Overparametrized deep neural networks trained by stochastic gradient descent are successful in performing many tasks of practical relevance. One aspect of overparametrization is the possibility that the student network has a larger expressivity than the data generating process. In the context of a student-teacher scenario, this corresponds to the so-called over-realizable case, where the student network has a larger number of hidden units than the teacher. For online learning of a two-layer soft committee machine in the over-realizable case, we present evidence that the approach to perfect learning occurs in a power-law fashion rather than exponentially as in the realizable case. All student nodes learn and replicate one of the teacher nodes if teacher and student outputs are suitably rescaled and if the numbers of student and teacher hidden units are commensurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.