Abstract

The aim of this study is to present the notion of soft intersection almost left (respectively, right) ideal of a semigroup which is a generalization of nonnull soft intersection left (respectively, right) ideal of a semigroup and investigate the related properties in detail. We show that every idempotent soft intersection almost (left/right) ideal is a soft intersection almost subsemigroup. Besides, we acquire remarkable relationships between almost left (respectively, right) ideals and soft intersection almost left (respectively, right) ideals of a semigroup as regards minimality, primeness, semiprimeness and strongly primeness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.