Abstract

Soft grasping is a great challenge for picking robots and its bionic inspiration originates from human fingers. In this study, the hand was scanned to obtain the internal structure of fingers by a computerized tomography (CT) scanner, and the soft contact mechanical index a was defined for characterizing the degree of softness of a finger region during gentle grasping. The effects of mechanics and structure of finger tissues on the soft contact mechanical index were investigated by finite element analysis and multiple linear regression. The finite element models of the 14 finger regions were split into 6 different groups by a hierarchical cluster analysis. In each group, a mathematical model was established to link the soft contact mechanical index with the mechanics as well as the structure of finger tissues. In most finger regions, their soft contact mechanical index significantly depended on the elastic moduli of the skin and subcutaneous tissue (Eskin, Etissue), the Poisson’s ratio ʋtissue and the thickness Ttissue of the subcutaneous tissue (p < 0.05). The Etissue showed the most contribution on the soft contact mechanical index of a finger region, followed by ʋtissue, Ttissue, and Eskin. This study demonstrated how the mechanics and structure of the human finger quantitatively affect its soft contact mechanical behavior during gentle grasping and further provided a bionic basis for developing robotic fingers with varying degrees of softness, particularly for fruit picking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.