Abstract

Soft- and reactive-landing of gas-phase synthesized cationic Cr(aniline)(2) complexes onto self-assembled monolayers of methyl-terminated (CH(3)-SAM) and carboxyl-terminated (COOH-SAM) organothiolates coated on gold were performed at hyperthermal collision energy (5-20 eV). The properties of the Cr(aniline)(2) complexes on the SAM surfaces were characterized using infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD), together with theoretical calculations based on density functional theory (DFT). For the CH(3)-SAM, the Cr(aniline)(2) complexes were embedded inside the SAM matrix in a neutral charge state, keeping a sandwich structure. For the COOH-SAM, the IRAS and TPD study revealed that the amine-containing Cr(aniline)(2) complexes were bound to the SAM surface in two forms of physisorption and chemical linking through an amide bond. In the desorption, the latter form appeared as the reaction product between organothiolates and Cr(aniline)(2) above 400 K, where the organothiolate molecules, forming the SAM, were desorbed from the gold surface. The results show that the hyperthermal depositions onto a COOH-SAM bring about reactive-landing followed by covalent linking of an amide bond between the amine-containing Cr(aniline)(2) complexes to the carboxyl-terminated SAM surface, in which the binding sites can be separated from the functional sites of the d-π interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.