Abstract

In traditional Chinese medicine, tanshinone IIA is a lipid-soluble component of Danshen that has been widely used for various cardiovascular and cerebrovascular disorders, including neonatal asphyxia. Despite promising effects, little is known regarding the hemodynamic effects of tanshinone IIA in newborn subjects. To examine the dose-response effects of sodium tanshinone IIA sulfonate (STS) on systemic and regional hemodynamics and oxygen transport, 12 newborn piglets were anesthetized and acutely instrumented for the placement of femoral arterial and venous, pulmonary arterial catheters to measure mean arterial, central venous, and pulmonary arterial pressures, respectively. The blood flow at the common carotid, renal, pulmonary, and superior mesenteric (SMA) arteries were continuously monitored after treating the piglets with either STS (0.1-30 mg/kg iv) or saline treatment (n = 6/group). To further delineate the underlying mechanisms for vasorelaxant effects of STS, in vitro vascular myography was carried out to compare its effect on rat mesenteric and carotid arteries (n = 4-5/group). STS dose-dependently increased the SMA blood flow and the corresponding oxygen delivery with no significant effect on systemic and pulmonary, carotid and renal hemodynamic parameters. In vitro studies also demonstrated that STS selectively dilated rat mesenteric but not carotid arteries. Vasodilation in mesenteric arteries was inhibited by apamin and TRAM-34 (calcium-activated potassium channel inhibitors) but not by meclofenamate (cyclooxygenase inhibitor) or N-nitro-l-arginine methyl ester hydrochloride (nitric oxide synthase inhibitor). In summary, without significant hemodynamic effects on newborn piglets, intravenous infusion of STS selectively increased mesenteric perfusion in a dose-dependent manner, possibly via an endothelium-derived hyperpolarizing factor vasodilating pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.