Abstract

Eliminations of alkyl halides by sodium diisopropylamide (NaDA) in tetrahydrofuran (THF)/hexane or THF/N,N-dimethylethylamine (DMEA) solutions are facile and complementary to analogous reactions of lithium diisopropylamide in THF. Rate studies show a dominance of monomer-based metalations and prevalent secondary-shell solvation effects overlaid on primary-shell effects. 1-Halooctanes exclusively undergo elimination rather than substitution. Rate and isotopic labeling studies on 1-bromooctane reveal an E2-like elimination pathway via trisolvated NaDA monomer. By contrast, 1-chlorooctane is eliminated via disolvated monomer through a carbenoid mechanism. exo-2-Norbornyl chloride and bromide are also eliminated via disolvated monomer; a syn E2 mechanism is inferred for these substrates. The cis- and trans-4-tert-butylcyclohexyl bromides show a preference for the elimination of the cis isomer (kcis/ax/ktrans/eq = 10). Rate and isotopic labeling studies are consistent with a trans-diaxial E2 elimination via trisolvated monomer for the cis isomer and a carbenoid mechanism via disolvated monomer for the trans isomer. Vicinal haloethers show substrate-dependent reactivities, affording alkynes and enol ethers. trans-1-Bromo-2-methoxycyclohexane provides enol ether 1-methoxycyclohexene, while trans-1-bromo-2-methoxycyclooctane provides dimeric products consistent with fleeting cycloocta-1,2-diene (cyclic allene), which was fully characterized as two conformers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.