Abstract
Sodium citrate (SC) is a widely-used food and industrial additive with the properties of complexation and microbial degradation. In the present study, nano-zero-valent iron reaction system (SC-nZVI@BC) was successfully established by modifying nanoscale zero-valent iron (nZVI) with SC and biochar (BC), and was employed to remove Cr(Ⅵ) from aqueous solutions. The nZVI, SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results showed that nZVI was successfully loaded on the biochar, and both the agglomeration and surface passivation problems of nanoparticles were well resolved. The dosage of SC, C:Fe, initial pH and Cr(Ⅵ) concentration demonstrated direct effects on the removal efficiency. The maximum Cr(Ⅵ) removal rate and the removal capacity within 60 min were 99.7% and 199.46 mg/g, respectively (C:Fe was 1:1, SC dosage was 1.12 mol.%, temperature was 25°C, pH = 7, and the original concentration of Cr(Ⅵ) was 20 mg/L). The reaction confirmed to follow the pseudo-second-order reaction kinetics, and the order of the reaction rate constant k was as follows: SC-nZVI@BC > nZVI@BC > SC-nZVI > nZVI. In addition, the mechanism of Cr(Ⅵ) removal by SC-nZVI@BC mainly involved adsorption, reduction and co-precipitation, and the reduction of Cr(Ⅵ) to Cr(Ⅲ) by nano Fe0 played a vital role. Findings from the present study demonstrated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ) with an improved synergistic characteristic by SC and BC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.