Abstract

The results of the present study that NaCl transport by in vitro rabbit gallbladder must be a consequence of a neutral coupled carrier-mediated mechanism that ultimately results in the active absorption of both ions; pure electrical coupling between the movements of Na and Cl can be excluded on the grounds of electrphysiologic considerations. Studies on the unidirectional influxes of Na and Cl have localized the site of this coupled mechanism to the mucosal membranes. Studies on the intracellular ion concentrations and the intracellular electrical potential are consistent with the notion that (a) the coupled NaCl influx process results in the movement of Cl from the mucosal solution into the cell against an apparent electrochemical potential difference; (b) the energy for the uphill movement of Cl is derived from the Na gradient across the mucosal membrane which is maintained by an active Na extrusion mechanism located at the basolateral membranes; and (c) Cl exit from the cell across the basolateral membranes is directed down an electrochemical potential gradient and may be diffusional. Finally, as for the case of rabbit ileum, the coupled NaCl influx process is inhibited by elevated intracellular levels of cyclic 3',5'-adenosine monophosphate. A working model for transcellular and paracellular NaCl transport by in vitro rabbit gallbladder is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.