Abstract

Storage plays a pivotal role in the performance of many applications. Optimizing disk architectures is a design-time as well as a run-time issue and requires balancing between performance, power and capacity. The design space is large and there are many knobs that can be used to optimize disk drive behavior. Here we present a sensitivity-based optimization for disk architectures (SODA) which leverages results from digital circuit design. Using detailed models of the electro-mechanical behavior of disk drives and a suite of realistic workloads, we show how SODA can aid in design and runtime optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.