Abstract
To date no models exist to study MnSOD deficiency in human cells. To address this deficiency, we created a SOD2-null human cell line that is completely devoid of detectable MnSOD protein expression and enzyme activity. We utilized the CRISPR/Cas9 system to generate biallelic SOD2 disruption in HEK293T cells. These SOD2-null cells exhibit impaired clonogenic activity, which was rescued by either treatment with GC4419, a pharmacological small-molecule mimic of SOD, or growth in hypoxia. The phenotype of these cells is primarily characterized by impaired mitochondrial bioenergetics. The SOD2-null cells displayed perturbations in their mitochondrial ultrastructure and preferred glycolysis as opposed to oxidative phosphorylation to generate ATP. The activities of mitochondrial complex I and II were both significantly impaired by the absence of MnSOD activity, presumably from disruption of the Fe/S centers in NADH dehydrogenase and succinate dehydrogenase subunit B by the aberrant redox state in the mitochondrial matrix of SOD2-null cells. By creating this model we provide a novel tool with which to study the consequences of lack of MnSOD activity in human cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.