Abstract

Since it was first proposed by Moses, Shoham, and Tennenholtz, the social laws paradigm has proved to be one of the most compelling approaches to the offline coordination of multiagent systems. In this paper, we make four key contributions to the theory and practice of social laws in multiagent systems. First, we show that the Alternating-time Temporal Logic (atl) of Alur, Henzinger, and Kupferman provides an elegant and powerful framework within which to express and understand social laws for multiagent systems. Second, we show that the effectiveness, feasibility, and synthesis problems for social laws may naturally be framed as atl model checking problems, and that as a consequence, existing atl model checkers may be applied to these problems. Third, we show that the complexity of the feasibility problem in our framework is no more complex in the general case than that of the corresponding problem in the Shoham–Tennenholtz framework (it is np-complete). Finally, we show how our basic framework can easily be extended to permit social laws in which constraints on the legality or otherwise of some action may be explicitly required. We illustrate the concepts and techniques developed by means of a running example.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.