Abstract

The reduction of CO2 emission has become one of the significant tasks to control climate change in China. This study employs Exploratory Spatial Data Analysis (ESDA) to identify the provinces in China with different types of spatiotemporal transition, and applies the Logarithmic Mean Divisia Index (LMDI) to analyze the influencing factors of industrial CO2 emissions. Spatial autocorrelation of provincial industrial CO2 emissions from 2003 to 2017 has been demonstrated. The results are as follows: (1) 30 provinces in China are categorized into 8 types of spatiotemporal transition, among which 24 provinces are characterized by stable spatial structure and 6 provinces show significant spatiotemporal transition; (2) For all types of spatiotemporal transition, economic scale effect is mostly contributed to industrial CO2 emission, while energy intensity effect is the most crucial driving force to reduce industrial carbon dioxide emission; (3) provinces of type HH-HH, HL-HL and HL-HH are most vital for CO2 emission reduction, while the potential CO2 emission increase of developing provinces in LL-LL, LH-LH and LL-LH should also be taken into account. Specific measures for CO2 emission reduction are suggested accordingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.