Abstract

Modern SoC applications include a variety of sensitive modules in which data must be protected against malicious access. Security vulnerabilities, when exercised during the SoC operation, lead to denial of service or disclosure of protected data. Hence, it is essential to undertake security validation before and after SoC fabrication and make provisions for continuous security assessment during operation. This paper presents a methodology for optimized post-deployment monitoring of SoC's security properties by migrating pre-fab design security assertions to post-fab run-time security monitors. We show that the method is scalable for large systems and complex properties by optimizing the hardware monitors and applying it to a large SoC design based on a OpenRISC-1200 SoC. About 40 security assertions were specified in System Verilog Assertions (SVA). Following formal verification, the assertions were synthesized into finite state machines and cross optimized. Following code generation in Verilog, commercial logic and layout synthesis tools were used to generate hardware monitors which were then integrated with the SoC design ready for fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.