Abstract

As deep learning algorithms are widely adopted, an increasing number of them are positioned in embedded application domains with strict reliability constraints. The expenditure of significant resources to satisfy performance requirements in deep neural network accelerators has thinned out the margins for delivering safety in embedded deep learning applications, thus precluding the adoption of conventional fault tolerance methods. The potential of exploiting the inherent resilience characteristics of deep neural networks remains though unexplored, offering a promising low-cost path towards safety in embedded deep learning applications. This work demonstrates the possibility of such exploitation by juxtaposing the reduction of the vulnerability surface through the proper design of the quantization schemes with shaping the parameter distributions at each layer through the guidance offered by appropriate training methods, thus delivering deep neural networks of high resilience merely through algorithmic modifications. Unequaled error resilience characteristics can be thus injected into safety-critical deep learning applications to tolerate bit error rates of up to at absolutely zero hardware, energy, and performance costs while improving the error-free model accuracy even further.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.