Abstract

BackgroundEnterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles.ResultsTotal enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium.ConclusionsThe distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation.

Highlights

  • Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance

  • There is a need to develop and apply new robust, rapid and cost effective techniques which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium. This was addressed in our previous study where we developed a single-nucleotide polymorphisms (SNP) based genotyping method to study the population structure of E. faecalis and E. faecium [29]

  • In this study we have applied this rapid SNP genotyping method to determine the diversity of enterococci in the Coomera River, South East Queensland, Australia over a period of two years and investigated the antibiotic resistance determinants associated with E. faecalis and E. faecium SNP genotypes

Read more

Summary

Results

Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and humanspecific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6’)-aph(2’) gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp gene. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium

Conclusions
Background
Methods
Dense urban areCa 5 Dense urban area
Results and Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.