Abstract

While astrophysical and cosmological probes provide a remarkably precise and consistent picture of the quantity and general properties of dark matter, its fundamental nature remains one of the most significant open questions in physics. Obtaining a more comprehensive understanding of dark matter within the next decade will require overcoming a number of theoretical challenges: the groundwork for these strides is being laid now, yet much remains to be done. Chief among the upcoming challenges is establishing the theoretical foundation needed to harness the full potential of new observables in the astrophysical and cosmological domains, spanning the early Universe to the inner portions of galaxies and the stars therein. Identifying the nature of dark matter will also entail repurposing and implementing a wide range of theoretical techniques from outside the typical toolkit of astrophysics, ranging from effective field theory to the dramatically evolving world of machine learning and artificial-intelligence-based statistical inference. Through this work, the theory frontier will be at the heart of dark matter discoveries in the upcoming decade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.