Abstract

A prime input variable to uncoupled ice-sheet models, or for estimating the mass budget of present-day ice sheets, is the distribution of net surface mass balance. In most eases this is extrapolated from relatively few direct measurements over a limited time period, and parameterised in terms of continentality, surface elevation and other broad-scale indicators. Between 1989 and 1995 a series of oversnow traverses around the interior of the Lambert Glacier basin gathered a comprehensive set of data on snow accumulation and surface properties, surface climatology, ice-sheet velocities, elevations and thicknesses. Above the 2000 m level accumulation averages were found to be 76 kg ma−2a−1 (σ = 74), much lower than at similar elevations in Wilkes Land. The traverse route contains three distinct accumulation regimes: a relatively high accumulation zone along the western side despite higher average elevations, a very low accumulation zone in the south due to the effect of inereased continentality and an eastern sector that exhibits a rain-shadow effect in predominantly easterly wind fields. Inter-annual variability is high- with 1993 a colder year, recording only half the longer term average accumulation over the portion of the route that was measured.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.