Abstract
The SNARE hypothesis, describing a protein assembly–disassembly pathway, was recently proposed for the sequential steps of synaptic vesicle docking, activation and fusion. To determine if SNARE proteins are involved in regulated exocytosis in eosinophils, the presence and functional role of SNAREs was examined in human blood eosinophils. Immunoblotting, subcellular fractionation, and immunocytochemistry documented that vesicle-associated membrane protein-2 (VAMP-2), a vesicle-SNARE, was expressed in human eosinophils. Syntaxin 4 and SNAP-25 were also detected. Sequencing of cloned RT-PCR products amplified from a domain conserved among VAMP isoforms revealed identity only to VAMP-2 but not to VAMP-1 or cellubrevin. Functional experiments revealed that tetanus toxin pretreatment, which cleaved VAMP-2 in eosinophils, significantly inhibited both IgE receptor- and phorbol ester-mediated exocytosis of eosinophil cationic protein (ECP) from streptolysin-O-permeabilized eosinophils. Thus, these results strongly suggest a critical role of SNAREs in regulated exocytosis in eosinophils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.