Abstract

BackgroundThird generation sequencing methods, like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Next Generation Sequencing (NGS) methods. Hence, they are well suited for de novo- or re-sequencing projects. Sequences generated for these purposes will not only contain reads originating from the nuclear genome, but also a significant amount of reads originating from the organelles of the target organism. These reads are usually discarded but they can also be used for an assembly of organellar replicons. The long read length supports resolution of repetitive regions and repeats within the organelles genome which might be problematic when just using short read data. Additionally, SMRT sequencing is less influenced by GC rich areas and by long stretches of the same base.ResultsWe describe a workflow for a de novo assembly of the sugar beet (Beta vulgaris ssp. vulgaris) chloroplast genome sequence only based on data originating from a SMRT sequencing dataset targeted on its nuclear genome. We show that the data obtained from such an experiment are sufficient to create a high quality assembly with a higher reliability than assemblies derived from e.g. Illumina reads only. The chloroplast genome is especially challenging for de novo assembling as it contains two large inverted repeat (IR) regions. We also describe some limitations that still apply even though long reads are used for the assembly.ConclusionsSMRT sequencing reads extracted from a dataset created for nuclear genome (re)sequencing can be used to obtain a high quality de novo assembly of the chloroplast of the sequenced organism. Even with a relatively small overall coverage for the nuclear genome it is possible to collect more than enough reads to generate a high quality assembly that outperforms short read based assemblies. However, even with long reads it is not always possible to clarify the order of elements of a chloroplast genome sequence reliantly which we could demonstrate with Fosmid End Sequences (FES) generated with Sanger technology. Nevertheless, this limitation also applies to short read sequencing data but is reached in this case at a much earlier stage during finishing.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-015-0726-6) contains supplementary material, which is available to authorized users.

Highlights

  • Third generation sequencing methods, like Single molecule (SMRT) (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Generation Sequencing (NGS) methods

  • Next Generation Sequencing (NGS) platforms suffer from a huge drawback: their read length is

  • Sequence motives that cannot be sequenced by NGS or even Sanger technology like longer single nucleotide runs or GC-rich regions can be read by SMRT sequencing [9]

Read more

Summary

Introduction

Like SMRT (Single Molecule, Real-Time) sequencing developed by Pacific Biosciences, offer much longer read length in comparison to Generation Sequencing (NGS) methods They are well suited for de novo- or re-sequencing projects. Sequence motives that cannot be sequenced by NGS or even Sanger technology like longer single nucleotide runs or GC-rich regions can be read by SMRT sequencing [9]. This makes the technology a very good choice for creating de novo assemblies or for improving existing NGS assemblies given that sufficient coverage can be generated

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.