Abstract

This chapter shows how spaces with separable dual admit a Fréchet smooth norm. It first considers a criterion of the differentiability of continuous convex functions on Banach spaces before discussing Fréchet smooth and nonsmooth renormings and Fréchet differentiability of convex functions. It then describes the connection between porous sets and Fréchet differentiability, along with the set of points of Fréchet differentiability of maps between Banach spaces. It also examines the concept of separable determination, the relevance of the σ‎-porous sets for differentiability and proves the existence of a Fréchet smooth equivalent norm on a Banach space with separable dual. The chapter concludes by explaining how one can show that many differentiability type results hold in nonseparable spaces provided they hold in separable ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.