Abstract
Simulations of surface smoothing (healing) by Langevin dynamics in large systems are reported. The surface model is described by a two-dimensional discrete sine-Gordon (solid-on-solid) equation. We study how initially circular terraces decay in time for both zero and finite temperatures and we compare the results of our simulations with various analytical predictions. We then apply this knowledge to the smoothing of a rough surface obtained by heating an initially flat surface above the roughening temperature and then quenching it. We identify three regimes in terms of their time evolution, which we are able to associate with the resulting terrace morphology. The regimes consist of a short initial stage, during which small scale fluctuations disappear; an intermediate, longer time interval, when evolution can be understood in terms of terraces and their interaction; and a final situation in which almost all terraces have been suppressed. We discuss the implications of our results for modeling rough surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.