Abstract

Binary search trees are one of the most fundamental data structures. While the height of such a tree may be linear in the worst case, the average height with respect to the uniform distribution is only logarithmic. The exact value is one of the best studied problems in average-case complexity. We investigate what happens in between by analysing the smoothed height of binary search trees: Randomly perturb a given (adversarial) sequence and then take the expected height of the binary search tree generated by the resulting sequence. As perturbation models, we consider partial permutations, partial alterations, and partial deletions. On the one hand, we prove tight lower and upper bounds of roughly ${\it \Theta}(\sqrt{n})$ for the expected height of binary search trees under partial permutations and partial alterations. This means that worst-case instances are rare and disappear under slight perturbations. On the other hand, we examine how much a perturbation can increase the height of a binary search tree, i.e. how much worse well balanced instances can become.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.