Abstract

A neuro fuzzy system which is embedded in the conventional control theory is proposed to tackle physical learning control problems. The control scheme is composed of two elements. The first element, the fuzzy sliding mode controller (FSMC), is used to drive the state variables to a specific switching hyperplane or a desired trajectory. The second one is developed based on the concept of the self organizing fuzzy cerebellar model articulation controller (FCMAC) and adaptive heuristic critic (AHC). Both compose a forward compensator to reduce the chattering effect or cancel the influence of system uncertainties. A geometrical explanation on how the FCMAC algorithm works is provided and some refined procedures of the AHC are presented as well. Simulations on smooth motion of a three-link robot is given to illustrate the performance and applicability of the proposed control scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.