Abstract

We present the characteristics of the sliding friction in large-diameter collapsed carbon nanotubes (CNTs) as emerged from molecular dynamics simulations. The friction force is found to depend strongly on the CNT sliding velocity, the interface contact area, interface commensuration, and temperature. The non-classical smooth sliding and superlubric behaviors identified at the molecular level give a useful starting reference to the ongoing efforts aimed at engineering the mechanical load transfer in material systems comprising collapsed CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.