Abstract

Polarized light microscopy (PLM) is a common but critical method for pharmaceutical crystallinity characterization, which has been widely introduced for research purposes or drug testing and is recommended by many pharmacopeias around the world. To date, crystallinity characterization of pharmaceutical solids is restricted to laboratories due to the relatively bulky design of the conventional PLM system, while little attention has been paid to on-site, portable, and low-cost applications. Herein, we developed a smartphone-based polarized microscope with an ultra-miniaturization design ("hand-held" scale) for these purposes. The compact system consists of an optical lens, two polarizers, and a tailor-made platform to hold the smartphone. Analytical performance parameters including resolution, imaging quality of interference color, and imaging reproducibility were measured. In a first approach, we illustrated the suitability of the device for pharmaceutical crystallinity characterization and obtained high-quality birefringence images comparable to a conventional PLM system, and we also showed the great promise of the device for on-site characterization with high flexibility. In a second approach, we employed the device as a proof of concept for a wider application ranging from liquid crystal to environmental pollutants or tissues from plants. As such, this smartphone-based hand-held polarized light microscope shows great potential in helping pharmacists both for research purposes and on-site drug testing, not to mention its broad application prospects in many other fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.