Abstract

Offshore wind energy is one of the fastest growing powers in the field of renewable energy. An offshore wind farm situated sufficiently far away from the coast can generate more wind power and will have a longer operation life since the wind is stronger and more consistent than that on or near the coast. It can also avoid some major problems of the traditional wind farms like the visual and noise impacts and potential damage to wildlife. From the technical point of view, it is difficult to anchor the wind turbines directly on the seabed in deep water. Thus, new constructive solutions based on floating support structures are proposed. One of the main challenges is to reduce the fatigue of a floating offshore wind turbine so as to guarantee its proper functioning under the constraints imposed by the floating support structures subject to a greater range of motion than that of the fixed-bottom support structures. This paper analyzes the loads and dynamic response of floating support structures and proposes the smart control strategies for mitigating the dynamic wind and wave loads on floating wind turbines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.