Abstract

AbstractResearch in smart materials and active structures has grown significantly at the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) in the last 10 years. The GRC has achieved several promising results in both new material development and component applications for concepts using both shape memory alloys and piezoelectric ceramics. Progress in understanding and modeling of shape memory alloys has allowed for improved design and control methodologies. New high-temperature alloys with attractive work output have extended the capability from room temperature to ∼350°C. Finally, the list of successful prototype demonstrations continues to grow for both commercially available alloys and the newer high-temperature alloys. Analytical and experimental methods on piezoelectric blade vibration damping have produced the first successful demonstration of vibration damping on a rotating component. The damping levels achieved lead to reduced dynamic stresses, hence increased engine ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.