Abstract

A hybrid sol–gel material formed by acid hydrolysis of a mixture of tetraethylorthosilicate (TEOS) and phenyltriethylorthosilicate (PTEOS) as functional monomers was imprinted by tyramine and dopamine as template molecules for the purpose of molecular recognition. Imprinted materials were spin coated as thin films on the surface of glassy carbon electrodes and then were characterized using cyclic voltammetry (CV). After extraction of the encapsulated molecules, imprinted films were tested in solutions of their templates and other molecules. Rebinding experiments were followed by electrochemical characterization using square wave voltammetry (SWV). Imprinted films showed higher affinities toward their template molecules compared to other structurally similar molecules especially for tyramine imprinted film. With the exception of tyramine and norepinephrine, the interference level did not exceed 5% for all compounds studied for dopamine-imprinted films. Tyramine-imprinted films however showed high affinity to tyramine with dopamine 40% interference. Some factors related to the rebinding ability process like pH of solution, concentration of template were studied. The sensing surface lifetime extended to 2 weeks with decay in response signal that ranged from 22%, 40% to 60% for dopamine, tyramine and norepinephrine, respectively. The standard deviation from the mean of measurements for the repeated experiments is 7.4%. Electrochemical impedance spectroscopy (EIS) measurements confirmed the results obtained by electrochemical measurements. Morphological characteristics of the imprinted thin films and their thickness were investigated using scanning electron microscope (SEM).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.