Abstract
In this paper, the smart fatigue load control of a representative floating wind turbine (FWT) with a tension-leg-platform was numerically investigated using our newly integrated aero-hydro-servo-elastic code. The control was achieved by introducing a local, fast and efficient closed-loop system based on deformable trailing edge flap (DTEF) activation near the tip of each blade, and as a result, it was able to effectively suppress the unstable loads on the critical components, as well as improve the general performances of FWT. The control effectiveness lies in the great impairment of original synchronized wind-rotor relationship by controllable DTEFs. This significantly decreased the combined effects of wind, waves and primary modes of blade, driving-chain components, tower and TLP platform, and subsequently attenuated the main fatigue loads on them. The effect of the control mechanism became more drastic as the investigation focused on the case beyond the rated wind velocity. In addition, the research findings showed the crucial role that the wind-wave-rotor relationship played during the development of smart rotor controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.