Abstract

A new light-switchable azo-surfactant arylazopyrazole tetraethylene glycol carboxylic acid (AAP-E4) was used as a molecular building block to functionalize macroscopic foams. AAP-E4 was studied in the bulk solution with UV/vis spectroscopy and at the interface with sum-frequency generation (SFG) as well as tensiometry. Additional foaming experiments were performed with a dynamic foam analyzer to study the role of AAP-E4 surfactants at the ubiquitous air–water interface as well as within macroscopic foam. In the bulk, it is possible to switch the AAP-E4 surfactant reversibly from trans to cis configurations and vice versa using 380 nm UV and 520 nm green light, respectively. At the interface, we demonstrate the excellent switching ability of AAP-E4 surfactants and a substantial modification of the surface tension. In addition, we show that the response of the interface is strongly influenced by lateral electrostatic interactions, which can be tuned by the charging state of AAP-E4. Consequently, the electrostatic disjoining pressure and thus the foam stability are highly dependent on the bulk pH and the charging state of the interface. For that reason, we have studied both the surface net charge (SFG) and the surface excess (tensiometry) as important parameters that determine foam stability in this system and show that neutral pH conditions lead to the optimal compromise between switching ability, surface excess, and surface charging. Measurements on the foam stability demonstrated that foams under irradiation with green light are more stable than foams irradiated with UV light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.