Abstract
TP53 is the most frequently mutated gene in human cancer, and small-molecule reactivation of mutant p53 function represents an important anticancer strategy. A cell-based, high-throughput small-molecule screen identified chetomin (CTM) as a mutant p53 R175H reactivator. CTM enabled p53 to transactivate target genes, restored MDM2 negative regulation, and selectively inhibited the growth of cancer cells harboring mutant p53 R175H in vitro and in vivo. We found that CTM binds to Hsp40 and increases the binding capacity of Hsp40 to the p53 R175H mutant protein, causing a potential conformational change to a wild-type-like p53. Thus, CTM acts as a specific reactivator of the p53 R175H mutant form through Hsp40. These results provide new insights into the mechanism of reactivation of this specific p53 mutant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.