Abstract

The study conducted in Southern Zambia investigated smallholder farmers’ use of indigenous knowledge to respond to rainfall variations and soil fertility problems. Farmer and key informant interviews and observations were employed to collect data. A total of 60 smallholder farmers and 6 key informants were interviewed. Chipepo lies in the low rainfall region of Zambia. Its upland area faces moisture stress and soil fertility problems compared to its valley areas located along tributaries of the Zambezi River. The annual flooding of the tributaries of the Zambezi River along the valley fields results in loss of crop yields. Farmers have responded to problems of low moisture in the upland fields and too much moisture in the river valley fields through crop diversification concentrated on three main food crops namely; maize, sorghum and bulrush millet. These differ not only in their moisture requirements but also in maturity periods. Drought tolerant early maturing crop varieties and off-farm activities enhance their resilience. Maize was planted in river valley fields due to its high water requirements while drought tolerant sorghum and millet were planted on upland fields. The farmers’ knowledge of particular flowering plants helped forecast the onset of rains for purposes of early planting. Farmers with upland fields have adopted indigenous soil classification techniques based on vegetation types, soil colour, and texture and soil workability and utilize particular soils for specific crops. Integrating this indigenous knowledge into modern technologies will enhance smallholder farmers’ resilience when faced with impacts of climate change and variability.

Highlights

  • Much of the effort aimed at improving the agricultural productivity of smallholder farmers in the developing world is focused on the use of modern technologies

  • The major agricultural problems faced by smallholder farmers in Chipepo area are those related to low yields due to rainfall and soil fertility induced crop failures

  • The relatively low rainfall received and its poor distribution as well as flooding of the Zambezi River on the valley fields coupled with poor soil fertility on the upland fields is among the reasons for crop failures

Read more

Summary

Introduction

Much of the effort aimed at improving the agricultural productivity of smallholder farmers in the developing world is focused on the use of modern technologies. Green Revolution technologies have been applied to modern science in developing countries’ agriculture in order to find scientific solutions to ending hunger and food insecurity, through research spearheaded by a global agricultural research system, the Consultative Group on International Agricultural Research (CGIAR) and national agricultural research systems (Spielman and Pandya-Lorch, 2009:4). The products of both global and national agricultural research are disseminated to developing country farmers through National Agricultural Research Systems (NARS). NARS disseminate highly technical and scientific knowledge through a cadre of agents trained in modern scientific disciplines such as agronomy, crop and animal science, soil science, agro-economics and horticulture

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.