Abstract

A general analytical procedure is presented for the equivalent circuit modeling of resonant converters, using the series and parallel resonant converters as examples. The switched tank elements of a resonant converter are modeled by a lumped parameter equivalent circuit. The tank element circuit model consists, in general, of discrete energy states, but may be approximated by a low-frequency continuous time model. These equivalent circuit models completely characterize the terminal behavior of the converters and are solvable for any transfer function or impedance of interest. With the approximate model it is possible to predict the lumped parameter poles and zeros, and to quickly determine the relevant DC gains of the output impedance and the control to output transfer function. Closed-form solutions are given for the equivalent circuit models of both converter examples. Experimental verification is presented for the control-to-output transfer functions of both series and parallel resonant converters, and good agreement between theoretical prediction and experimental measurement is obtained.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.