Abstract
In situ measurements in a shallow water sediment were performed using three different modules—a microprofiling unit, a transparent benthic chamber, and a planar optode periscope. The combined data set revealed an extremely patchy and variable benthic O2 distribution primarily due to temporal variations in fauna activity and photosynthesis. A distinct diel pattern in the fauna activity, dominated by Hediste diversicolor, resulted in strongly elevated O2 uptake rates of ~5.3 mmol m𠈒2 h𠈒1 at the onset of darkness. The activity gradually diminished during the night, and the O2 uptake decreased to less than half the maximum rate just before sunrise. The volume of oxic sediment around burrow structures was influenced by changing environmental conditions (benthic photosynthesis and fauna activity) but grossly exceeded that below the primary sediment surface. The volume specific respiration rate around burrows was more than seven times higher than the equivalent value at the sediment surface. A budget of the O2 consumption revealed that the O2 uptake through the burrow walls just after sunset accounted for the major part of the total O2 uptake on a diel scale. The study demonstrates that light‐driven variations in fauna activity can have great effects on the total benthic O2 consumption rate with large implications for estimated benthic mineralization rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.