Abstract

Vibration characteristics of non-uniform single-walled carbon nanotubes (SWCNTs) conveying fluid embedded in viscoelastic medium are investigated using nonlocal Euler–Bernoulli beam theory. The governing differential equations are solved with the finite element method and the frequencies are obtained by solving a quadratic eigenvalue problem. The effects of taper ratio, small-scale parameter and viscoelastic medium on resonant frequencies and critical steady flow velocity are discussed. It is shown that by increasing the taper ratio, the critical flow velocity decreases and the combined mode observed for uniform SWCNTs in the previous works does not occur when the taper ratio is non-zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.