Abstract

ABSTRACTWe study the effect of large-scale spectral forcing on the scale-dependent anisotropy of the velocity field in direct numerical simulations of homogeneous turbulence. ABC-type forcing and helical or non-helical Euler-type forcing are considered. We propose a scale-dependent characterisation of anisotropy based on a modal decomposition of the two-point velocity tensor spectrum. This produces direction-dependent spectra of energy, helicity and polarisation. We examine the conditions that allow anisotropy to develop in the small scales due to forcing and we show that the theoretically expected isotropy is not exactly obtained, even in the smallest scales, for ABC and helical Euler forcings. When adding rotation, the anisotropy level in ABC-forced simulations is similar to that of lower Rossby number Euler-forced runs. Moreover, even at low rotation rate, the natural anisotropy induced by the Coriolis force is visible at all scales, and two distinct wavenumber ranges appear from our fine-grained characterisation, not separated by the Zeman scale but by a scale where rotation and dissipation are balanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.