Abstract

The gamma frailty model is a natural extension of the Cox proportional hazards model in survival analysis. Because the frailties are unobserved, an E-M approach is often used for estimation. Such an approach is shown to lead to finite sample underestimation of the frailty variance, with the corresponding regression parameters also being underestimated as a result. For the univariate case, we investigate the source of the bias with simulation studies and a complete enumeration. The rank-based E-M approach, we note, only identifies frailty through the order in which failures occur; additional frailty which is evident in the survival times is ignored, and as a result the frailty variance is underestimated. An adaption of the standard E-M approach is suggested, whereby the non-parametric Breslow estimate is replaced by a local likelihood formulation for the baseline hazard which allows the survival times themselves to enter the model. Simulations demonstrate that this approach substantially reduces the bias, even at small sample sizes. The method developed is applied to survival data from the North West Regional Leukaemia Register.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.