Abstract

Self-recognition is observed abundantly throughout the natural world, regulating diverse biological processes. Although ubiquitous, often little is known of the associated molecular machinery, and so far, organismal self-recognition has never been described in nematodes. We investigated the predatory nematode Pristionchus pacificus and, through interactions with its prey, revealed a self-recognition mechanism acting on the nematode surface, capable of distinguishing self-progeny from closely related strains. We identified the small peptide SELF-1, which is composed of an invariant domain and a hypervariable C terminus, as a key component of self-recognition. Modifications to the hypervariable region, including single-amino acid substitutions, are sufficient to eliminate self-recognition. Thus, the P. pacificus self-recognition system enables this nematode to avoid cannibalism while promoting the killing of competing nematodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.